1,508 research outputs found

    DIAPHRAGM MUSCLE STRIP PREPARATION FOR EVALUATION OF GENE THERAPIES IN mdx MICE

    Full text link
    1.  Duchenne muscular dystrophy (DMD), a severe muscle wasting disease of young boys with an incidence of one in every 3000, results from a mutation in the gene that encodes dystrophin. The absence of dystrophin expression in skeletal muscles and heart results in the degeneration of muscle fibres and, consequently, severe muscle weakness and wasting. The mdx mouse discovered in 1984, with some adjustments for differences, has proven to be an invaluable model for scientific investigations of dystrophy. 2.  The development of the diaphagm strip preparation provided an ideal experimental model for investigations of skeletal muscle impairments in structure and function induced by interactions of disease- and age-related factors. Unlike the limb muscles of the mdx mouse, which show adaptive changes in structure and function, the diaphragm strip preparation reflects accurately the deterioration in muscle structure and function observed in boys with DMD. 3.  The advent of sophisticated servo motors and force transducers interfaced with state-of-the-art software packages to drive complex experimental designs during the 1990s greatly enhanced the capability of the mdx mouse and the diaphragm strip preparation to evaluate more accurately the impact of the disease on the structure–function relationships throughout the life span of the mouse. 4.  Finally, during the 1990s and through the early years of the 21st century, many promising, sophisticated genetic techniques have been designed to ameliorate the devastating impact of muscular dystrophy on the structure and function of skeletal muscles. During this period of rapid development of promising genetic therapies, the combination of the mdx mouse and the diaphragm strip preparation has provided an ideal model for the evaluation of the success, or failure, of these genetic techniques to improve dystrophic muscle structure, function or both. With the 2 year life span of the mdx mouse, the impact of age-related effects can be studied in this model.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72970/1/j.1440-1681.2007.04865.x.pd

    Extensive degeneracy, Coulomb phase and magnetic monopoles in an artificial realization of the square ice model

    Full text link
    Artificial spin ice systems have been introduced as a possible mean to investigate frustration effects in a well-controlled manner by fabricating lithographically-patterned two-dimensional arrangements of interacting magnetic nanostructures. This approach offers the opportunity to visualize unconventional states of matter, directly in real space, and triggered a wealth of studies at the frontier between nanomagnetism, statistical thermodynamics and condensed matter physics. Despite the strong efforts made these last ten years to provide an artificial realization of the celebrated square ice model, no simple geometry based on arrays of nanomagnets succeeded to capture the macroscopically degenerate ground state manifold of the corresponding model. Instead, in all works reported so far, square lattices of nanomagnets are characterized by a magnetically ordered ground state consisting of local flux-closure configurations with alternating chirality. Here, we show experimentally and theoretically, that all the characteristics of the square ice model can be observed if the artificial square lattice is properly designed. The spin configurations we image after demagnetizing our arrays reveal unambiguous signatures of an algebraic spin liquid state characterized by the presence of pinch points in the associated magnetic structure factor. Local excitations, i.e. classical analogues of magnetic monopoles, are found to be free to evolve in a massively degenerated, divergence-free vacuum. We thus provide the first lab-on-chip platform allowing the investigation of collective phenomena, including Coulomb phases and ice-like physics.Comment: 26 pages, 10 figure

    Age- and Gender-Related Changes in Contractile Properties of Non-Atrophied EDL Muscle

    Get PDF
    Background: In humans, ageing causes skeletal muscles to become atrophied, weak, and easily fatigued. In rodent studies, ageing has been associated with significant muscle atrophy and changes in the contractile properties of the muscles. However, it is not entirely clear whether these changes in contractile properties can occur before there is significant atrophy, and whether males and females are affected differently. Methods and Results: We investigated various contractile properties of whole isolated fast-twitch EDL muscles from adult (2–6 months-old) and aged (12–22 months-old) male and female mice. Atrophy was not present in the aged mice. Compared with adult mice, EDL muscles of aged mice had significantly lower specific force, longer tetanus relaxation times, and lower fatiguability. In the properties of absolute force and muscle relaxation times, females were affected by ageing to a greater extent than males. Additionally, EDL muscles from a separate group of male mice were subjected to eccentric contractions of 15 % strain, and larger force deficits were found in aged than in adult mice. Conclusion: Our findings provide further insight into the muscle atrophy, weakness and fatiguability experienced by the elderly. We have shown that even in the absence of muscle atrophy, there are definite alterations in the physiological properties of whole fast-twitch muscle from ageing mice, and for some of these properties the alterations are mor

    The effect of lengthening contractions on neuromuscular junction structure in adult and old mice

    Get PDF
    Skeletal muscles of old mice demonstrate a profound inability to regenerate fully following damage. Such a failure could be catastrophic to older individuals where muscle loss is already evident. Degeneration and regeneration of muscle fibres following contraction-induced injury in adult and old mice are well characterised, but little is known about the accompanying changes in motor neurons and neuromuscular junctions (NMJs) following this form of injury although defective re-innervation of muscle following contraction-induced damage has been proposed to play a role in sarcopenia. This study visualised and quantified structural changes to motor neurons and NMJs in Extensor digitorum longus (EDL) muscles of adult and old Thy1-YFP transgenic mice during regeneration following contraction-induced muscle damage. Data demonstrated that the damaging contraction protocol resulted in substantial initial disruption to NMJs in muscles of adult mice, which was reversed entirely within 28 days following damage. In contrast, in quiescent muscles of old mice, ∼15 % of muscle fibres were denervated and ∼80 % of NMJs showed disruption. This proportion of denervated and partially denervated fibres remained unchanged following recovery from contraction-induced damage in muscles of old mice although ∼25 % of muscle fibres were completely lost by 28 days post-contractions. Thus, in old mice, the failure to restore full muscle force generation that occurs following damage does not appear to be due to any further deficit in the percentage of disrupted NMJs, but appears to be due, at least in part, to the complete loss of muscle fibres following damag

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans

    Destabilization of the Dystrophin-Glycoprotein Complex without Functional Deficits in α-Dystrobrevin Null Muscle

    Get PDF
    α-Dystrobrevin is a component of the dystrophin-glycoprotein complex (DGC) and is thought to have both structural and signaling roles in skeletal muscle. Mice deficient for α-dystrobrevin (adbn−/−) exhibit extensive myofiber degeneration and neuromuscular junction abnormalities. However, the biochemical stability of the DGC and the functional performance of adbn−/− muscle have not been characterized. Here we show that the biochemical association between dystrophin and β-dystroglycan is compromised in adbn−/− skeletal muscle, suggesting that α-dystrobrevin plays a structural role in stabilizing the DGC. However, despite muscle cell death and DGC destabilization, costamere organization and physiological performance is normal in adbn−/− skeletal muscle. Our results demonstrate that myofiber degeneration alone does not cause functional deficits and suggests that more complex pathological factors contribute to the development of muscle weakness in muscular dystrophy
    • …
    corecore